Data Science & Machine Learning For Quantity Surveyors: A Brief Perspective

Yu Qian Ang, PhD

INTRODUCTION

INTRODUCTION

Machine learning as a subfield of artificial intelligence

Everyone talks about it

Nobody really knows how to do it

Everyone thinks everyone else is doing it

So everyone claims they are doing it too

Machine Learning vs Deep Learning ...

Coding Deep Learning For Beginners | by

Machine Learning and Deep Learnin

Oracle Machine Learning Basics

Deep Learning vs. Machine Learni. Machine Learning Models Develop Machine Learning Applications

A program that can sense, reason,

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP EARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Breakdown of

applicable

Full value can be captured

using non-Al techniques

Al necessary

("greenfield")

to capture

value

Al can

improve performance

over that provided

by other analytics

techniques

Organizations report lower cost and higher revenue

Cost decrease and revenue increase from AI adoption, by function,¹% of respondents²

	Average revenue increase							
	Increase In		Increase by 6–10%		Increase by >10%			
5		40			3	0		10
•	31		21		19			
ient	28		22	2		13		
	3	4	1	3	14	Ļ		
	31		14		15			
nance	27		24	ł	ε	3		
	28		16		13			
	20	23	1	2				

Value based on sectors

Potential incremental value from AI over other analytics techniques, %

FRAMEWORK

AMEWORK

VISED

SED

IMPLMENTA

CON<u>CLUSION</u>

Technique relevance based on sectors

Share of AI impact in total impact derived from analytics, %

INTRODUCTION

Machine learning already used in many Architecture, Engineering and Construction (AEC) applications

INTRODUCTION

FRAMEWORK

ODUCTION

FRAMEWORK

UNS

LMENTATION

Superv	rised Learning	Super	vised Learning	Unsup	Unsupervised Learning				
Re Outcome: Continuou	egression s (example: predicting cost)	Cle Outcome: Discrete (examp	assification ble: classify type of variation order)	Outcome: Clusters (ex	Clustering Outcome: Clusters (example: group similar cost items)				
Linear Regression	Basic fast, linear model	Logistic Regression	Basic, fast	K-Means	Basic, fast. Need to select K				
Bayesian Linear Regression	Linear model, small dataset	Decision Tree Classifier	Fast, can include both categorica and numerical predictors	Hierarchical Clustering	Merge data points until desired number of clusters reached				
Decision Tree Regression	Fast, able to include both categorical and numerical predictors	Tree-based Ensemble Models (e.g. Random Forest Classifier)	Fast, accurate Able to include both categorical	DBSCAN	Find high-density regions				
Tree-based Ensemble Models (e.g. Random Forest Regressor)	Fast, accurate Able to include both categorical and numerical predictors	Boosted Ensemble Models (e.g. XGBoost, LightGBM)	Accurate, longer training time that typical decision-tree models	Mean Shift Gaussian Mixture Models	Find and adapt centroids Summarizes a multivariate probability density function with a mix of				
Boosted Ensemble Models (e.g. XGBoost, LightGBM)	Accurate, longer training time than typical decision-tree models	Neural Network Classifiers	Requires larger training dataset by can be potentially accurate		Gaussian probability distributions				
Neural Network Regressors	Requires larger training dataset but car be potentially accurate		Ţ						
			predict categories/groups						
predict values			discover patterns/structures						
	Method Ty reduce data dimensions			pe / Purpose analyse text					
Dimensionality Reduction			Text Analytics / Natural Language Processing						
	Outcome: Reduce Dimension (example: Reduce predictors)			m Text (example: analyse contract uments)					
	Principal Component Analysis	Basic, popular, fast	Latent Dirichlet Allocation	Unsupervised topic modelling					
	t-SNE	Nonlinear dimensionality reduction, stochastic	Word2Vec	Convert words to values for use in NLP tasks					
	Singular Value Decomposition	Fast, works for sparse data	Transformers	Deep learning model with self-					
	Linear Discriminant Analysis	Multi-class classification algorithm that can be used for dimensionality reduction		anemion, amerennare weighling					

Supervised learning categorized by the use of labelled training datasets to train algorithms

TRODUCTION

CONCLUSION

Tree-based ensemble methods

Generative Adversarial Networks for Floor Plans – by Stanislas Chaillou (Harvard GSD)

SUPERVISED

Generating floor plan

CONCLUSION

Generative Adversarial Networks for entire buildings

Generating entire buildings + cost plans

<u>Use cases</u>

SUPERVISED

- 1. Automated, intelligent cost plans
- 2. Automatically re-generate / repair elements
- 3. Recommendations and insights to support decisions

0.0 0.2 0.4

UNSUPERVISED

Some conflicts involve higher cost & time implications

Can we design a process where algorithms will identify these?

(image source: lodplanner)

BA

A A L > 20 M to B A A A + 20 M to B A A + 20 M to B A A + 20 M to B + 20 M to B

UNSUPERVISED

Input cost (rates) and time parameters into BIM

ITRODUCTION

RAMEWORK

UNSU

UNSUPERVISED

OT

APLMENTATION

CONCLUSION

Yu Qian Ana | Slide 14

Training language models (GPT-3)

Unsupervis	ed Pro	e-trainir	ng			
<pre> /</pre>				1	Correct output (la	abel):
Input (features)	а	robot	must	L r	obey	
			ł			
		GPT-3				
	(เ	under training	3)			
			Ļ			
Outp	ut (Predic	tion)				
1				. Г		
- 1				- 1		
I.				1		

Use cases for Natural Language Models

- 1. Highly intelligent auto-complete for tender documents
- 2. Automatic generating contracts based on inputs

38	<pre>import requests r = requests.post("https://api.deepai.org/api/text-generator", data={ 'text': 'The quantity surveyor for the construction project made a mistake in his cost estimates.', }, headers={'api-key': 'quickstart-QUdJIG1zIGNvbWluZy4uLi4K'})</pre>					
✓ (0s	<pre>butput = r.json()</pre>					
	print(output['output'])					
	The quantity surveyor for the construction project made a mistake in his cost estimates. The first round of costs to date, for an initial five years worth \$25 million, had been the result of two "lowest estimate of any of the contracts," he explained.					
	As costs were put in place, though, "it was very difficult for me to make sense of the new contract for a contractor." This gave the project time to build up its work.					
	"By doing the lower estimate, we were able to avoid the uncertainty we had over when to start using a subcontractor's contract and how short it would have to be to start working fulltime," he explained.					
	This helped the contractors avoid the same financial troubles that prevented them from hiring a full-time engineer at the facility. This was a factor that led to the design of the facility, especially at a time when the state was trying to build its own electricity grid.					
	He also noted that no matter which contractor was hired, there was often not enough funding available to get the facility up to speed. This could be a factor in the lack of funds for a large project like the solar panel plant.					
	Budget					
	In the end, B.C.'s largest project, BC West Regional Transmission, raised its funding goal at \$7.6 million.					
	The total cost for this program, which was announced in December 2011, raised \$2 million. One year earlier, B					

PROBLEMS Challenges + Opportunities

IMPLEMENTATION

2

Identify Requirements & Needs

- Depends on firm size, core competencies, business model etc.
- Challenge is knowledge rarely codified in full
- Translate into
 programmatic rulesets
- Identify feasible and achievable goals

Create Economies of Scale

- Review inputs, controls, procedures and documentations
- Identify areas that can be streamlined
- Develop consistency
- Design 'archetype applications'

Assess Existing Capabilities & Development Needs

- Customized vs off-the-shelf
 approaches
- Access value capture of solutions vs investment
- Access resource
 availability

Pilot & Scale

- Pilot in select test-bed projects
- Iteratively improve machine learning models and results
- Identify areas of improvement and monitor results
- Scale accordingly

Takeaways

Not Software

Common software should be able to interface with machine learning code

Importance of Technical Skillsets + Domain Knowledge

Programming literacy important in modern day AEC domains

Value-added Services

Consultancy hyper-competitive, important to drive higher value capture

Competitive Advantage

QS firm and software vendor that figure out how to incorporate these workflows poised to be market leader

