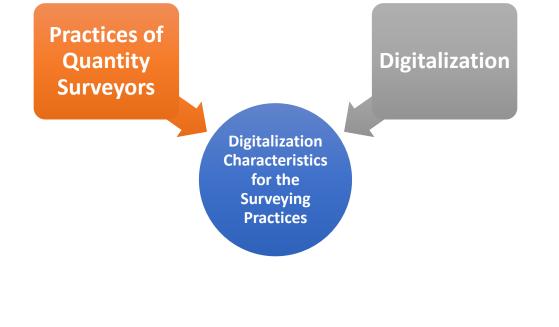


Identification of Digitalization Characteristics for the Surveying Practices across the PAQS Country Members – via an Interview Survey


Mei-yung LEUNG, Seki Ka Ching CHAN, Dharma Angkasa ANGKY, Paul BOWEN, Haelly HAMID, Mohamed HUMDHAN, Florence Yean Yng LING, Masato YOKOZAWA, Hong ZHANG, Nadzirah ZAINORDIN

Introduction

- The construction industry is known as one of the most information-intensive industries (Toole, 2003).
- The industry is still heavily reliant on the traditional means of communications (Mohamed and Stewart, 2003), resulting in low productivity and poor project management (Wu et al, 2017).
- With application of modern information technologies, digitalization is considered as a potential solution to facilitate the exchange and management of information (Rivard et al, 2004).

Literature Review

Methodology

exploratory study

international interview survey

7-point Likert-type scale

April 2022 to August 2022

Country	Respond Number	Respond Percentage
Brunei (BR)	6	12.5%
China (CN)	5	10.4%
Hong Kong (HK)	7	14.6%
Indonesia (ID)	11	22.9%
Japan (JP)	7	14.6%
Singapore (SG)	4	8.3%
South Africa (SA)	8	16.7%

01

Software Application

Digitalization Characteristics 03

Project Performance

Software Application

Country	Design > Tendering Stages	Estimation > Construction > Maintenance Stages
Brunei (BR)	Not mention	Buildsoft, Vico Office, Cubit, BuildSpace
China (CN)	preferred not keeping the same software in use	
Hong Kong (HK)	Not mention	Buildsoft, Vico Office, Cubit, <i>cloud computing</i> <i>software</i>
Indonesia (ID)	Glodon, iTWO costX	Glodon
Japan (JP)		In house system
Singapore (SG)	Revit, iTWO costX	Buildsoft, Vico Office, Cubit
South Africa (SA)	QSPlus	DimensionX, WinQS

Findings

• Digitalization Characteristics 26 variables were identified and categorized into six major aspects

Manifestation		Key Excerpts			
Digitalization Characteristics					
D1. Work Preparation					
Popularity	HK-7	: Secondly, there are many BIM software in the current market, but no one			
		actually know which software would be used in the future.			
	JP-1	: We use AutoCAD because it is widely used in the world.			
Simplicity	SA-1	: It has kept relatively simple, relatively affordable and intuitive. It's not too difficult to learn.			
Adaptability	SG-1	: Software does not follow closely QS Practices and Procedures.			
Extensibility	JP-4	: In-house development of proprietary tools for analysis, such as <i>plug-ins</i> , etc.			
D2. Information Updating					
Tailorability	HK-3	: The flexibility is higher than other software, because you can tailor made (say, summary, list or table) by yourself.			
Editability	[D-1	: It can be <i>easily modified</i> as designs developed.			
·	SG-4	: Dependency on the software, marked up filed <i>can only be edited in the same software.</i>			
Extractability	CN-3	: This software mainly calculates the results by input related images and dates.			
Convertibility	SA-8	: You measure in 2D, use the 3D system or for just the 3D modeling more for checking that you know your quants and that type of thing.			
Traceability	JP-2	: Difficult to manage <i>revision history</i> .			

D3. Informati	on Pre	sentation
Classification	JP-2	: Easy to use item classification and tabulation functions because the software
		is specialized for creating itemized statements.
Comparability	BR-1	: Assist to find discrepancies
	HK-1	: Hence, when we are using TAS to do tender analysis, we can use the
		software to do the comparison.
Reliability	ID-1	: It is too easy for staff to rely on the software, and not consider what
		information is being output.
D4. Information	on Exc	hange
Shareability	JP-2	: Data linkage with fabricators is possible, but follow-up on operational
		aspects (rules, etc.) is difficult.
Real-time	CN-2	: It can also output various types of operating data in real time on the
operability		construction sites.
Compatibility	SG-2	: At this stage, the software <i>can not show any connection</i> to the <i>procurement method</i> .
	54-4	: However, now it's (DimX) very much more compatible with QS plus.
Interoperability	1	: It has little interoperability with other software.
meroperaomity	ID-1	: It doesn't always integrate well with design software used by architects and
	10-1	engineers.

Finding

• Project Performances

Manifestation	Key Excerpts	
Project Performan	ce	
P1. Process Perform	nance	
Project management	CN-1	: Characteristic wise, it remains high guidance value for on-site
		construction and <i>strong controllability of project construction funds and progress</i> with complex modeling process.
Process	SA-5	
simplification		simpler where you don't need to set up a full format.
Comprehensiveness	HK-5	: It can achieve the same result, but the approach is less comprehensive.
	SG-2	: The software can provide better performance by having a
		comparatively holistic perspective to present the design.
Effective	ID-1	: Another benefit is that in the event of staff changes it is easy to
communication		handover.
P2. Final Performa	nce	
Time	SA-8	: Dimension X and programs like it, they drastically improve the speed in which you can measure and do takeoffs.
Number of errors	CN-4	: On the characteristic wise, this software remains some real good parts
		such as <i>quickly and accurately</i> evaluating whole scale of the project.
Clear presentation	BR-1	: Visual Representation
Productivity		: Once the data collected, it can make <i>higher productivity</i> for revisions.
Client satisfaction	SA-6	: What does the client want? They want an accurate estimate, they don't
		care about what's happening on the site and they would want the final
		account that they see coming.
Trust	HK-3	: When I would like to claim payment after receiving the file, I, as a
		contractor, don't fully trust him. Because I don't know his
		measurement, we are not based on the same model.

Disposition Model

Digitalization Characteristics

D1. Work Preparation

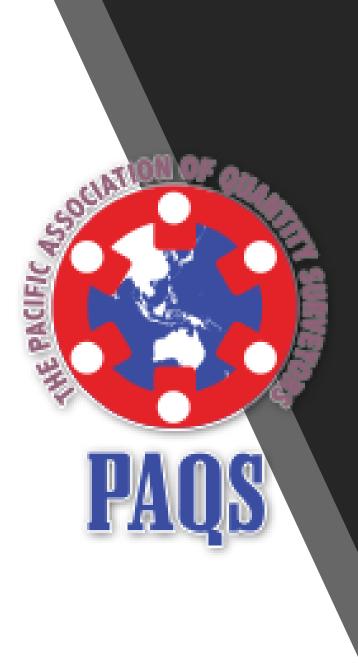
D2. Information Updating

D3. Information Presentation

D4. Information Exchange

Project Performance

P1. Process Performance


P2. Final Performance

Conclusion

- data were gathered from a relatively small sample of quantity surveyors which may not reflect the full picture of current digitalization practice in quantity surveying.
- Since part of the data was collected by completed interview forms, there is the possibility of subjective biases during the note-taking process.
- Future studies are suggested to adopt contextual data analysis by collecting scripts and conducting cross-checking by data analysis software to obtain more objective results.

Conclusion

- Based on an interview study of software applications for quantity surveying practice during different development stages, this study identified various digitalization characteristics into four major dimensions: work preparation, information updating, information presentation, information exchange; and two types of performance (i.e., process performance and final performance).
- In order to understand the impact of the digitalization characteristics on the surveying practices, further studies on a quantitative study across the countries are strongly recommended.

Acknoweldgement

- The work described in this paper was fully supported by a grant from the PAQS in 2022
- The contribution from all PAQS countries members

References

- Baldwin, A.N., Thorpe, A., and Carter, C., 1999. The use of electronic information exchange on construction alliance projects. Automation in Construction, 8(6), 651–662. https://doi.org/10.1016/S0926-5805(98)00110-1
- Casini, M., 2021. Construction 4.0: Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry. Woodhead Publishing.
- Chandramohan, A., Perera, B.A.K.S., and Dewagoda, K.G., 2022. Diversification of professional quantity surveyors' roles in the construction industry: the skills and competencies required. International Journal of Construction Management, 22(7), 1374-1381. https://doi.org/10.1080/15623599.2020.1720058
- Craveiro, F., Duarte, J.P., Bartolo, H., and Bartolo, P.J., 2019. Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Automation in Construction, 103, 251–267. https://doi.org/10.1016/j.autcon.2019.03.011
- Dada, J.O., and Jagboro, G.O., 2012. Core skills requirement and competencies expected of quantity surveyors: Perspectives from quantity surveyors, allied professionals and clients in Nigeria. Construction Economics and Building, 12(4), 78–90. https://doi.org/10.5130/AJCEB.v12i4.2808
- Hamelink, C.J., 1997. New information and communication technologies, social development and cultural change (Vol. 86). Geneva: United Nations Research Institute for Social Development.
- Mohamed, S., and Stewart, R.A., 2003. An empirical investigation of users' perceptions of web-based communication on a construction project. Automation in Construction, 12(1), 43–53. https://doi.org/10.1016/S0926-5805(02)00039-0
- Peansupap, V., and Walker, D., 2005. Factors affecting ICT diffusion: A case study of three large australian construction contractors. *Engineering, Construction and Architectural Management*, 12(1), 21–37. https://doi.org/10.1108/09699980510576871
- Päivi P., Maarit T., Jukka K., and Susanna T., 2017. Tackling the digitalization challenge: how to benefit from digitalization in practice. International Journal of Information Systems and Project Management, 5(1), 63–77. https://doi.org/10.12821/ijispm050104
- RICS, 2018. Pathway guide: Quantity Surveying and Construction. London: RICS.
- Rivard, H., Froese, T., Waugh, L.M., El-Diraby, T., Mora, R., Torres, H., Gill, S.M., and O'Reilly, T., 2004. Case Studies on the Use of Information Technology in the Canadian Construction Industry. Journal of Information Technology in Construction, 9, 19–34.
- Schallmo, D.R.A., and Williams, C.A., 2018. Digital Transformation Now!. Springer International Publishing. <u>https://doi.org/10.1007/978-3-319-72844-5_2</u>
- Toole, T.M., 2003. Information Technology Innovation: A View of Large Contractors. In *Conference: Construction Research Congress 2003*, March 19-21, 2003, Honolulu, Hawaii, United States. https://doi.org/10.1061/40671(2003)132
- Wu, G., Zhao, X., and Zuo, J., 2017. Relationship between Project's Added Value and the Trust–Conflict Interaction among Project Teams. *Journal of Management in Engineering*, 33(4), 4017011. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000525

